Lie algebraic characterization of manifolds
نویسندگان
چکیده
Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (realanalytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.
منابع مشابه
ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملLie algebaic characterization of supercommutative space
During the last decades algebraization of space turned out to be a promising tool at the interface between Mathematics and Theoretical Physics. Starting with works by Gel’fand-Kolmogoroff and Gel’fand-Naimark, this branch developed as from the fortieth in two directions: algebraic characterization of usual geometric space on the one hand, and algebraically defined noncommutative space, which is...
متن کاملHopf Algebras of Formal Diffeomorphisms and Numerical Integration on Manifolds
B-series originated from the work of John Butcher in the 1960s as a tool to analyze numerical integration of differential equations, in particular Runge–Kutta methods. Connections to renormalization have been established in recent years. The algebraic structure of classical Runge–Kutta methods is described by the Connes–Kreimer Hopf algebra. Lie–Butcher theory is a generalization of B-series ai...
متن کاملGROUPOID ASSOCIATED TO A SMOOTH MANIFOLD
In this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. We show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a Lie groupoid. Using this approach, we associated to every vector field an equivalence relation on the Lie algebra of all vector fields on the smooth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003